IMPACT OF ALCOHOL CONSUMPTION ON TUBERCULOSIS TREATMENT OUTCOMES

Chané Buys SACENDU, 25 April 2023

Funding

Burroughs Wellcome Fund-ASTMH NIH-Fogarty K01TW009213 NIH-NIAID R01 AI119037

BACKGROUND

PREVALENCE OF TB IN WORCESTER

BACKGROUND

- Ten percent of tuberculosis (TB) deaths are attributable to problem alcohol use globally
- Problem alcohol use in key populations is a major driver of poor TB treatment response
- Heavy episodic drinking, is associated with delayed culture conversion and higher rates of treatment failure, relapse and death
- High prevalence of alcohol and other drug use in the WC, especially in the rural farming regions

AIMS

AIM₁

To (i) examine the associations between problem alcohol use and TB treatment outcomes, and (ii) demonstrate that these associations persist independent of adherence to TB treatment

AIM 2

To evaluate the effect of problem alcohol use on the PK/PD of TB drugs among participants not living with HIV

METHOD

Baseline

- ☐ Biobehavioral interview
- □ Blood collection
- ☐ Chest X-Ray
- □ Sputum for MTB isolate
- ☐ Data extraction from medical records

Week 1-12
Sputum collection
Week 2
Pax gene blood draw

Post treatment (12 months after treatment completion)

- ☐TB symptom screening
- ☐ Extra sputum if experiencing symptoms
- ☐Time-line follow back

Months 1-6 Visits

- □ Interviews
- ☐ Side effects screening
- Data extraction from medical record
- ☐ Time-line follow back

INNOVATIONS: CAPTURING ALCOHOL CONSUMPTION

Self-report

Alcohol Use Disorders **Identification Test** (AUDIT), Time-Line Follow Back (TLFB)

Biomarker

Blood, Phosphatidylethanol (PEth) test

Repeated Measures

(changes over time)

1 bottle beer/cider (330ml)

1 can beer/cider (330ml)

Quantities of different drinks that are the same as ONE standard drink

1 carton ijuba (1L)

R2-00 jar isigatha/injemane

CLASSIFICATION

OF ALCOHOL EXPOSURE

Peth (ng/mL)		
< 50	Low	
50-200	Moderate	
> 200	High	
AUDIT risk		
Low risk	scores < 8	
Harmful to hazardous	scores of 8-20	
Dependence	scores ≥ 8	
Heavy alcohol use (TLFB)		
Men	≥96 g AA (8 standard drinks)	
Women	≥72 g AA (six standard drinks)	

BASELINE DEMOGRAPHICS (N=392)

No. (%) or Median (Q1,Q3)			
	Problem Alcohol	No Problem	
	Use (N=221)	Alcohol Use (N=171)	<i>p</i> value
Male at Birth	133 (60.2%)	103 (60.2%)	0.992
Age, years	40 (31, 49)	35 (25, 48)	0.020
ВМІ			0.938
Underweight (<18.5)	137 (62.0%)	109 (63.7%)	
Normal weight (18.5-25)	73 (33.0%)	54 (31.6%)	
Overweight & obese (>25)	11 (5.0%)	8 (4.7%)	
Race, self identified			
Cape Coloured (Mixed Ancestry)	210 (95.0%)	157 (91.8%)	
Black African	9 (4.1%)	9 (5.3%)	
Indian/Asian	0 (0.0%)	1 (0.6%)	
White	0 (0.0%)	1 (0.6%)	
Other	2 (0.9%)	3 (1.8%)	
Education < 9 th Grade	104 (47.1%)	62 (36.3%)	0.032
Unemployed	145 (65.6%)	119 (69.6%)	0.405
Previous incarceration	67 (30.3%)	57 (33.5%)	0.499
Depression Risk			0.633
High depression risk	146 (66.1%)	109 (63.7%)	
Low depression risk	75 (33.9%)	62 (36.3%)	
Household Hunger			0.408
Moderate to severe	101 (45.7%)	71 (41.5%)	
Little to none	120 (54.3%)	100 (58.5%)	

TREATMENT OUTCOMES

DRUG USE AT BASELINE

Drug	N (%)
Dagga	177 (45.15)
Tik	117 (29.85)
Cocaine	8 (2.04)
Heroin	5 (1.28)
Mandrax	132 (33.67)
Inhalants	34 (8.67)
Ecstasy/Club drugs	14 (3.57)
Prescription drugs	8 (2.04)

PEOPLE WHO SMOKE DRUGS (55% OF COHORT), TB DISEASE **BURDEN AND INFECTIOUSNESS IN CLINIC SETTING**

Bronwyn Myers

Association Between Smoked Substance Use and			
Baseline Time to Positivity (N=239)			
	Adjusted	95% CI	р
	Hazard Ratio		value
Smoked drug use	1.48	(1.10,	0.008
		1.97)	

^{*}Adjusted for age, gender, HIV, tobacco

Association Between Smoked Substance Use and Cavitation , (N=293)			
(11 200)	Adjusted Odds Ratio	95% CI	p value
Smoked substance use	1.08	(0.62, 1.87)	0.799

^{*}Adjusted for age, gender, HIV, tobacco, and previous TB

Myers B, et al, IJTLD, in press

Association Between Smoked Substance Use and Smear			
Positivity (N=302)			
	Adjusted	95% CI	p value
	Odds		
	Ratio		
Smoked substance use	2.28	(1.22, 4.34)	0.011

^{*}Adjusted for age, gender, HIV, tobacco

*Reference group: no smoked subst

^{*}Reference group: no smoked substance use

^{*}Reference group: no smoked substance use, no previous TB

DEPRESSION RISK TRAJECTORIES BY ALCOHOL USE

QUALITATIVE STUDY AIM

- To explore participants' and key stakeholders' perceptions of the relationship between alcohol use and TB disease
- To identify the reasons for changes in alcohol consumption during illness and throughout treatment and
- To explore readiness of participants who consume alcohol to partake in reduction or cessation programs during TB treatment

PERCEPTIONS OF ALCOHOL USE & TB

Perceived increased transmission of TB among those who use alcohol "It is something that you pick up while using alcohol- drinking out of one glass. The guys coughs right in your face"-Male participant

Awareness of the effect of alcohol on TB related outcome
"Many people take their medication and go and drink or smoke and that has an effect on them. They get dizzy, get attacks shake etc."
Male participant

Alcohol associated with decreased medication adherence

"After 2-3 months of treatment then they feel fine. That's when they start drinking again. They feel fine but the TB is still inside their system."

(Male Participant, FG1)

CONCLUSION

- Patients with an alcohol use disorder have a higher incidence of adverse reactions
- Higher than expected prevalence of TB disease among people who smoke illicit drugs in a high TB burden setting
- Depression risk associated with alcohol dependence
- Drivers of problem alcohol use were poverty, violence and the normalization of heavy episodic drinking.

INVESTIGATOR & RESEARCH TEAM

